JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Pancreatic cancer cells surviving gemcitabine treatment express markers of stem cell differentiation and epithelial-mesenchymal transition.

Objective response rates to standard chemotherapeutic regimens remain low in pancreatic cancer. Subpopulations of cells have been identified in various solid tumors which express stem cell-associated markers and are associated with increased resistance against radiochemotherapy. We investigated the expression of stem cell genes and markers of epithelial-mesenchymal transition in pancreatic cancer cells that survived high concentrations of gemcitabine treatment. Capan-1 and Panc-1 cells were continuously incubated with 1 and 10 µM gemcitabine. Surviving cells were collected after 1, 3 and 6 days. Expression of PDX-1, SHH, CD24, CD44, CD133, EpCAM, CBX7, OCT4, SNAIL, SLUG, TWIST, Ki-67, E-cadherin, β-catenin and vimentin were quantified by qPCR or immunocytochemistry. Migration was assessed by wound‑healing assay. SHH was knocked down using RNA interference. Five primary pancreatic cancer cell lines were used to validate the qPCR results. All investigated genes were upregulated after 6 days of gemcitabine incubation. Highest relative expression levels were observed for OCT4 (13.4-fold), CD24 (47.3-fold) and EpCAM (15.9-fold) in Capan-1 and PDX-1 (13.3‑fold), SHH (24.1-fold), CD44 (17.4-fold), CD133 (20.2-fold) and SLUG (15.2-fold) in Panc-1 cells. Distinct upregulation patterns were observed in the primary cells. Migration was increased in Panc-1 cells and changes in the expression of E-cadherin and β-catenin were typical of epithelial-mesenchymal transition in both cell lines. SHH knockdown reduced IC(50) from 30.1 to 27.6 nM in Capan-1 while it strongly inhibited proli-feration in Panc-1 cells. Cells surviving high-dose gemcitabine treatment express increased levels of stem cell genes, show characteristics associated with epithelial-mesenchymal transition and retain their proliferative capacity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app