Add like
Add dislike
Add to saved papers

Optimization of the dynamic, Gd-EOB-DTPA-enhanced MRI of the liver: the effect of the injection rate.

Acta Radiologica 2012 November 2
BACKGROUND: Tissue-specific gadolinium-based contrast agents such as Gd-BOPTA, Gd-EOB-DTPA are increasingly used for liver imaging. Despite the added value of the hepatobiliary phase a proper arterial phase is still critical, especially in patients with chronic liver diseases. So far, there are limited data in the literature about the effect of the injection speed of Gd-EOB-DTPA in liver and vessel enhancement.

PURPOSE: To evaluate the effect of injection rate on the enhancement of liver parenchyma and vasculature in Gd-EOB-DTPA-enhanced liver MRI.

MATERIAL AND METHODS: Eighty patients who underwent Gd-EOB-DTPA-enhanced liver MRI (1.5T multi-channel MR-system) were retrospectively evaluated. We used a Care Bolus technique with an injection rate of 2 mL/s in group 1 (n = 40) and a Care Bolus technique with an injection rate of 1 mL/s in group 2 (n = 40) to determine the start of the arterial-dominant phase. Signal intensities were measured in vascular structures and liver parenchyma. Signal-to-noise-ratio (SNR), SNR increase (SNRi), and percentage enhancement (PE) were calculated and compared by a students t-test.

RESULTS: The SNR, SNRi, and PE of the aorta in the arterial phase were significantly higher in group 2 in comparison to group 1 (P = 0.007, P = 0.0043, and P < 0.001, respectively). There were no significant differences concerning the SNR, SNRi, or PE of the portal vein and the normal liver parenchyma between both groups at all time points.

CONCLUSION: The study shows that a lower injection rate of 1 mL/s enables a higher enhancement in the aorta in the arterial phase compared with Gd-EOB-DTPA-enhanced MRI with the more commonly used injection rate of 2 mL/s.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app