Add like
Add dislike
Add to saved papers

Acetylcholinesterase (AChE) inhibitory activity, antioxidant properties and phenolic composition of two Aframomum species.

BACKGROUND: Aframomum species are widely used as a food supplement and remedy in folklore medicine for the management of several diseases. This study was designed to investigate the acetylcholinesterase inhibitory activity and antioxidant properties of phenolic-rich extracts from two Aframomum species: Aframomum danielli (Hook F.) K. Schum (Zingiberaceae) and Aframomum melegueta (Roscoe) K. Schum (Zingiberaceae) seeds.

METHODS: Acetylcholinesterase inhibitory activity and antioxidant properties [inhibition of quinolinic acid (QA)-induced lipid peroxidation in rat brain, reducing properties, 2,2-azinobis (3-ethylbenzo-thiazoline-6-sulfonate) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging abilities] using in vitro models were evaluated. Phenolic composition of the seed extracts using reversed phase high performance chromatography (RP-HPLC) and gas chromatography coupled with flame ionization detector (GC-FID) were also assessed.

RESULTS: Both extracts exhibited acetylcholinesterase inhibitory activity in a dose-dependent manner (125-1000 μg/mL); however, A. melegueta extract (IC50=373.33 μg/mL) had a significantly higher (p<0.05) acetylcholinesterase inhibitory activity than A. danielli extract (IC50=417.10 μg/mL). Furthermore, both extracts significantly decreased QA-elevated brain malondialdehyde (MDA) contents, reduced Fe3+ to Fe2+ and scavenged DPPH and ABTS radicals. Phenolic characterization of the seeds by RP-HPLC at 280 nm showed abundance of quercetin and kaempferol in A. melegueta and chlorogenic acid in A. danielli, whereas GC-FID revealed that p-hydroxybenzoic acid was abundant in both seeds.

CONCLUSIONS: Inhibitory effect of these extracts on acetylcholinesterase activity and their antioxidant property could be attributed to the combined effect of phenolic and non-phenolic constituents of the seeds. These effects could be part of the possible biochemical mechanism by which these seeds elicit their protection against oxidative stress in brain; however, A. melegueta showed the more promising potential.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app