Acetylcholinesterase (AChE) inhibitory activity, antioxidant properties and phenolic composition of two Aframomum species

Stephen A Adefegha, Ganiyu Oboh
Journal of Basic and Clinical Physiology and Pharmacology 2012, 23 (4): 153-61

BACKGROUND: Aframomum species are widely used as a food supplement and remedy in folklore medicine for the management of several diseases. This study was designed to investigate the acetylcholinesterase inhibitory activity and antioxidant properties of phenolic-rich extracts from two Aframomum species: Aframomum danielli (Hook F.) K. Schum (Zingiberaceae) and Aframomum melegueta (Roscoe) K. Schum (Zingiberaceae) seeds.

METHODS: Acetylcholinesterase inhibitory activity and antioxidant properties [inhibition of quinolinic acid (QA)-induced lipid peroxidation in rat brain, reducing properties, 2,2-azinobis (3-ethylbenzo-thiazoline-6-sulfonate) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging abilities] using in vitro models were evaluated. Phenolic composition of the seed extracts using reversed phase high performance chromatography (RP-HPLC) and gas chromatography coupled with flame ionization detector (GC-FID) were also assessed.

RESULTS: Both extracts exhibited acetylcholinesterase inhibitory activity in a dose-dependent manner (125-1000 μg/mL); however, A. melegueta extract (IC50=373.33 μg/mL) had a significantly higher (p<0.05) acetylcholinesterase inhibitory activity than A. danielli extract (IC50=417.10 μg/mL). Furthermore, both extracts significantly decreased QA-elevated brain malondialdehyde (MDA) contents, reduced Fe3+ to Fe2+ and scavenged DPPH and ABTS radicals. Phenolic characterization of the seeds by RP-HPLC at 280 nm showed abundance of quercetin and kaempferol in A. melegueta and chlorogenic acid in A. danielli, whereas GC-FID revealed that p-hydroxybenzoic acid was abundant in both seeds.

CONCLUSIONS: Inhibitory effect of these extracts on acetylcholinesterase activity and their antioxidant property could be attributed to the combined effect of phenolic and non-phenolic constituents of the seeds. These effects could be part of the possible biochemical mechanism by which these seeds elicit their protection against oxidative stress in brain; however, A. melegueta showed the more promising potential.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"