Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Changes in the expression of aromatase, estrogen receptor α and β in mandibular condylar cartilage of rats induced by disordered occlusion.

BACKGROUND: Estrogens play an important role in modulating the morphology and function of temporomandibular joints (TMJs), which is suggested to act via estrogen receptors (ERs). The present study was to investigate the expression of aggrecan, collagen type II (Col II), Col X, aromatase, ERα and ERβ in degenerative changes of mandibular condylar cartilage.

METHODS: Forty male and 40 female 8-week-old rats were enrolled in this study. In experimental groups, the disordered occlusion was created by moving the first molars mesially and the third ones distally. Immunohistochemistry and real-time PCR were performed at the end of the second or fourth week.

RESULTS: Degenerative changes, characterized by interrupted continuity of hypertrophic layer, pyknotic and eosinophilic lesion with few nuclei, areas filled with eosinophilic nuclei, were observed in more joints from female experimental groups than male ones. However, thickening changes in hypertrophic layer were only found in male experimental groups. The gene expression of Col II, Col X and aggrecan increased in 4-wk male experimental subgroup (both P < 0.01), but decreased in 2-wk and 4-wk female subgroups (P < 0.05). The gene expression of ERα decreased in 2-wk male and female experimental subgroups (both P < 0.01), however, that of ERβ increased except the 2-wk female experimental subgroup (all P < 0.01). The expression of aromatase decreased in both male and female experimental subgroups (all P<0.01).

CONCLUSIONS: Mandibular condylar cartilage responses differently to the disordered occlusion in male and female rats. The levels of locally synthesized estrogen, ERα and ERβ may have limited attribution, if any, to the sex-specific cartilage response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app