Add like
Add dislike
Add to saved papers

6-gingerol ameliorated doxorubicin-induced cardiotoxicity: role of nuclear factor kappa B and protein glycation.

PURPOSE: Doxorubicin is a widely used antitumour drug. Cardiotoxicity is considered a major limitation for its clinical use. The present study was designed to assess the possible antioxidant and antiapoptotic effects of 6-gingerol in attenuating doxorubicin-induced cardiac damage.

METHOD: Male albino rats were treated with either intraperitoneal doxorubicin (18 mg/kg divided into six equal doses for 2 weeks) and/or oral 6-gingerol (10 mg/kg starting 5 days before and continued till the end of the experiment).

RESULTS: 6-gingerol significantly ameliorated the doxorubicin-induced elevation in the cardiac enzymes. The stimulation of oxidative stress by doxorubicin was evidenced by the significant decrease in the serum soluble receptor for advanced glycation endproduct allowing unopposed serum advanced glycation endproduct availability. Moreover, doxorubicin activated nuclear factor kappa B (NF-κB) which was indicated by an increase in its immunohistochemical staining in the nucleus. In addition, doxorubicin-induced cardiotoxicity was accompanied by elevation of cardiac caspase-3. Notably, pretreatment with 6-gingerol significantly ameliorated the changes in sRAGE, NF-κB and cardiac caspase-3. Cardiac enzymes showed significant positive correlation with NF-κB and caspase-3 but negative with serum sRAGE, suggesting their role in doxorubicin-induced cardiac injury. These findings were confirmed by cardiac tissue histopathology.

CONCLUSION: 6-gingerol, a known single compound from ginger with anticancer activity, was shown to have a promising role in cardioprotection against doxorubicin-induced cardiotoxicity. This study suggested a novel mechanism for 6-gingerol cardioprotection, which might be mediated through its antioxidative effect and modulation of NF-κB as well as apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app