Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

TRAIL and Noxa are selectively upregulated in prostate cancer cells downstream of the RIG-I/MAVS signaling pathway by nonreplicating Sendai virus particles.

Clinical Cancer Research 2012 November 16
PURPOSE: The treatment of cancer with oncolytic viruses primarily depends on the selective viral replication in cancer cells. However, a replication-incompetent hemagglutinating virus of Japan (HVJ; Sendai virus) envelope (HVJ-E) suppresses the growth of human cancer cells as effectively as replication-competent live HVJ without producing toxic effects in nonmalignant cells. Here, we analyze the molecular mechanism of the oncolytic activity of HVJ-E.

EXPERIMENTAL DESIGN: The molecules responsible for HVJ-E-induced cancer cell death were elucidated in prostate cancer cell lines, and the effect of HVJ-E on orthotopic prostate cancers was evaluated in nonobese diabetic-severe combined immunodeficient (NOD-SCID) mice.

RESULTS: The liposome-mediated transfer of viral RNA genome fragments from HVJ-E suppressed the viability of prostate cancer cells but not the viability of the noncancerous prostate epithelium. Knockdown experiments using siRNAs showed that the cancer cell-selective killing induced by HVJ-E was mediated by retinoic acid-inducible gene I (RIG-I) and mitochondrial antiviral signaling protein (MAVS). Downstream of the RIG-I/MAVS pathway, both TNF-related apoptosis-inducing ligand (TRAIL) and Noxa were upregulated by HVJ-E in the castration-resistant prostate cancer cell line PC3 but not in the noncancerous prostate epithelial cell line PNT2. TRAIL siRNA but not Noxa siRNA significantly inhibited HVJ-E-induced cell death in PC3 cells. However, Noxa siRNA effectively suppressed HVJ-E-induced cell death in DU145 cells, another castration-resistant prostate cancer cell line, in which Noxa but not TRAIL was upregulated by HVJ-E. Furthermore, the orthotopic prostate cancers were dramatically eradicated in immunodeficient mice injected with HVJ-E.

CONCLUSION: The RIG-I/MAVS signaling pathway represents an attractive target for cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app