Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Additive white Gaussian noise level estimation in SVD domain for images.

Accurate estimation of Gaussian noise level is of fundamental interest in a wide variety of vision and image processing applications as it is critical to the processing techniques that follow. In this paper, a new effective noise level estimation method is proposed on the basis of the study of singular values of noise-corrupted images. Two novel aspects of this paper address the major challenges in noise estimation: 1) the use of the tail of singular values for noise estimation to alleviate the influence of the signal on the data basis for the noise estimation process and 2) the addition of known noise to estimate the content-dependent parameter, so that the proposed scheme is adaptive to visual signals, thereby enabling a wider application scope of the proposed scheme. The analysis and experiment results demonstrate that the proposed algorithm can reliably infer noise levels and show robust behavior over a wide range of visual content and noise conditions, and that is outperforms relevant existing methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app