Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Noise-induced Förster resonant energy transfer between orthogonal dipoles in photoexcited molecules.

We show that Förster resonance energy transfer (FRET) in an orthogonally arranged donor-acceptor pair can be induced by environmental noise, although direct transfer is prohibited. Environmental fluctuations break the strict orthogonal dipole arrangement and cause effective fluctuating excitonic interactions. Using a scaling argument, we show that interaction fluctuations are coupled to those of the energy levels and are strong enough to induce large FRET rates. This mechanism also explains the temperature dependence observed in a recent experiment on a perylene bisimide dyad and predicts a modified distance dependence as compared to standard Förster theory.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app