JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Serotypes, antimicrobial susceptibility, and beta-lactam resistance mechanisms of clinical Haemophilus influenzae isolates from Bulgaria in a pre-vaccination period.

OBJECTIVE: To determine the serotypes, antimicrobial susceptibility, and beta-lactam resistance mechanisms of Haemophilus influenzae strains isolated from invasive and respiratory tract infections (RTIs) prior to the introduction of Haemophilus influenzae type b (Hib) vaccination in Bulgaria.

METHODS: A total of 259 isolates were serotyped by polymerase chain reaction. Susceptibility to antibiotics and beta-lactamase production were determined, and DNA sequencing of the ftsI gene was performed for ampicillin non-susceptible strains.

RESULTS: The invasive H. influenzae infections in children were mainly due to serotype b (94.5% in meningitis and 88.9% in other invasive cases). Non-typeable strains (97.4%) were the most frequently found H. influenzae strains in RTIs both in children and adults. Non-susceptibility to ampicillin occurred in 22% of all strains. Ceftriaxone and levofloxacin were the most active agents tested. Ampicillin resistance occurred in 34.4% of invasive strains, and beta-lactamase production was the only mechanism found. Among respiratory tract isolates, ampicillin non-susceptible strains (18%) were classified into the following groups: beta-lactamase-positive, ampicillin-resistant (BLPAR) strains (7.2%); beta-lactamase-negative, ampicillin-non-susceptible (BLNAR) strains (8.2%); and beta- lactamase-positive, amoxicillin-clavulanate-resistant (BLPACR) strains (2.6%). Among 21 BLNAR and BLPACR strains there were 9 different patterns of multiple-amino acid substitutions in penicillin-binding protein 3. Of these, most isolates (81.0%) belonged to group II, defined by the Asn526Lys substitution.

CONCLUSIONS: Beta-lactamase production was more common among invasive strains than in respiratory isolates. BLNAR and BLPACR H. influenzae were found only among respiratory tract isolates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app