Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Inhibition of autophagy as a strategy to augment radiosensitization by the dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235.

We investigated the effect of 2-methyl-2-{4-[3-methyl-2-oxo-8-(quinolin-3-yl)-2,3-dihydro-1H-imidazo[4,5-c]quinolin-1-yl]phenyl} propanenitrile (NVP-BEZ235) (Novartis, Basel Switzerland), a dual phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitor currently being tested in phase I clinical trials, in radiosensitization. NVP-BEZ235 radiosensitized a variety of cancer cell lines, including SQ20B head and neck carcinoma cells and U251 glioblastoma cells. NVP-BEZ235 also increased in vivo radiation response in SQ20B xenografts. Knockdown of Akt1, p110α, or mTOR resulted in radiosensitization, but not to the same degree as with NVP-BEZ235. NVP-BEZ235 interfered with DNA damage repair after radiation as measured by the CometAssay and resolution of phosphorylated H2A histone family member X foci. NVP-BEZ235 abrogated the radiation-induced phosphorylation of both DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and ataxia telangiectasia mutated. Knockdown of either p110α or mTOR failed to decrease the phosphorylation of DNA-PKcs, suggesting that the effect of the drug was direct rather than mediated via p110α or mTOR. The treatment of cells with NVP-BEZ235 also promoted autophagy. To assess the importance of this process in radiosensitization, we used the autophagy inhibitors 3-methyladenine and chloroquine and found that either drug increased cell killing after NVP-BEZ235 treatment and radiation. Knocking down the essential autophagy proteins autophagy related 5 (ATG5) and beclin1 increased NVP-BEZ235-mediated radiosensitization. Furthermore, NVP-BEZ235 radiosensitized autophagy-deficient ATG5(-/-) fibroblasts to a greater extent than ATG5(+/+) cells. We conclude that NVP-BEZ235 radiosensitizes cells and induces autophagy by apparently distinct mechanisms. Inhibiting autophagy via pharmacologic or genetic means increases radiation killing after NVP-BEZ235 treatment; hence, autophagy seems to be cytoprotective in this situation. Our data offer a rationale for combining NVP-BEZ235 along with an autophagy inhibitor (i.e., chloroquine) and radiation in future clinical trials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app