JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Platelet-rich plasma-derived growth factors promote osteogenic differentiation of rat muscle satellite cells: in vitro and in vivo studies.

PRP (platelet-rich plasma)-derived growth factors are a new application of tissue engineering and a developing area for researchers and clinicians. We have assessed the effects of PRP-derived growth factors on the proliferation and osteogenic differentiation of rMSCs (rat muscle satellite cells), and constructed a novel tissue engineering bone composed of PRP-derived growth factors and rMSCs. PRP were created by a freeze-thaw process. rMSCs were isolated from rat masticatory muscle using serial platings technique. Wst-1 assay, SEM (scanning electron microscopy), ALP (alkaline phosphatase) activity, total protein concentration, AR (Alizarin red S) staining, calcium analyses and RT-PCR (reverse transcription-PCR) of osteogenic-related genes were used to assess the effect of PRP-derived growth factors on proliferation and osteogenic differentiation of cultured rMSCs on scaffolds. The different composite scaffolds were implanted to the subcutaneous spaces of nude mice. H&E (haematoxylin and eosin) and Masson's trichrome staining were used to examine the ectopic bone formation. In vitro, we found that PRP-derived growth factors showed excellent cell compatibility and significantly enhanced cell proliferation over serum and control groups at 48 and 72 h. SEM, ALP activity, AR staining, calcium analyses and RT-PCR showed that PRP-derived growth factors significantly increased cells osteogenic differentiation when compared with other groups. In vivo examination showed that more fibrous tissue capsule and bone with lamellar structures appeared in PRP-derived growth factors groups. These results suggest that the PRP-derived growth factors significantly promote rMSCs proliferation, osteogenic differentiation compared with serum and scaffolds alone, and may be suitable for stem cell growth factors delivery and bone tissue engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app