JOURNAL ARTICLE

Co-evolution between Grapevine rupestris stem pitting-associated virus and Vitis vinifera L. leads to decreased defence responses and increased transcription of genes related to photosynthesis

Giorgio Gambino, Danila Cuozzo, Marianna Fasoli, Chiara Pagliarani, Marco Vitali, Paolo Boccacci, Mario Pezzotti, Franco Mannini
Journal of Experimental Botany 2012, 63 (16): 5919-33
22987838
Grapevine rupestris stem pitting-associated virus (GRSPaV) is a widespread virus infecting Vitis spp. Although it has established a compatible viral interaction in Vitis vinifera without the development of phenotypic alterations, it can occur as distinct variants that show different symptoms in diverse Vitis species. The changes induced by GRSPaV in V. vinifera cv 'Bosco', an Italian white grape variety, were investigated by combining agronomic, physiological, and molecular approaches, in order to provide comprehensive information about the global effects of GRSPaV. In two years, this virus caused a moderate decrease in physiological efficiency, yield performance, and sugar content in berries associated with several transcriptomic alterations. Transcript profiles were analysed by a microarray technique in petiole, leaf, and berry samples collected at véraison and by real-time RT-PCR in a time course carried out at five grapevine developmental stages. Global gene expression analyses showed that transcriptomic changes were highly variable among the different organs and the different phenological phases. GRSPaV triggers some unique responses in the grapevine at véraison, never reported before for other plant-virus interactions. These responses include an increase in transcripts involved in photosynthesis and CO(2) fixation, a moderate reduction in the photosynthesis rate and some defence mechanisms, and an overlap with responses to water and salinity stresses. It is hypothesized that the long co-existence of grapevine and GRSPaV has resulted in the evolution of a form of mutual adaptation between the virus and its host. This study contributes to elucidating alternative mechanisms used by infected plants to contend with viruses.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
22987838
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"