Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Molecular scaffolds underpinning macroglial polarization: an analysis of retinal Müller cells and brain astrocytes in mouse.

Glia 2012 December
Key roles of macroglia are inextricably coupled to specialized membrane domains. The perivascular endfoot membrane has drawn particular attention, as this domain contains a unique complement of aquaporin-4 (AQP4) and other channel proteins that distinguishes it from perisynaptic membranes. Recent studies indicate that the polarization of macroglia is lost in a number of diseases, including temporal lobe epilepsy and Alzheimer's disease. A better understanding is required of the molecular underpinning of astroglial polarization, particularly when it comes to the significance of the dystrophin associated protein complex (DAPC). Here, we employ immunofluorescence and immunogold cytochemistry to analyze the molecular scaffolding in perivascular endfeet in macroglia of retina and three regions of brain (cortex, dentate gyrus, and cerebellum), using AQP4 as a marker. Compared with brain astrocytes, Müller cells (a class of retinal macroglia) exhibit lower densities of the scaffold proteins dystrophin and α-syntrophin (a DAPC protein), but higher levels of AQP4. In agreement, depletion of dystrophin or α-syntrophin--while causing a dramatic loss of AQP4 from endfoot membranes of brain astrocytes--had only modest or insignificant effect, respectively, on the AQP4 pool in endfoot membranes of Müller cells. In addition, while polarization of brain macroglia was less affected by dystrophin depletion than by targeted deletion of α-syntrophin, the reverse was true for retinal macroglia. These data indicate that the molecular scaffolding in perivascular endfeet is more complex than previously assumed and that macroglia are heterogeneous with respect to the mechanisms that dictate their polarization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app