Add like
Add dislike
Add to saved papers

Mechanistic basis for the effects of process parameters on quality attributes in high shear wet granulation.

Three model compounds were used to study the effect of process parameters on in-process critical material attributes and a final product critical quality attribute. The effect of four process parameters was evaluated using design of experiment approach. Batches were characterized for particle size distribution, density (porosity), flow, compaction, and dissolution rate. The mechanisms of the effect of process parameters on primary granule properties (size and density) were proposed. Water amount showed significant effect on granule size and density. The effect of impeller speed was dependent on the granule mechanical properties and efficiency of liquid distribution in the granulator. Blend density was found to increase rapidly during wet massing. Liquid addition rate was the least consequential factor and showed minimal impact on granule density and growth. Correlations of primary properties with granulation bulk powder properties (compaction and flow) and tablet dissolution were also identified. The effects of the process parameters on the bulk powder properties and tablet dissolution were consistent with their proposed link to primary granule properties. Understanding the impact of primary granule properties on bulk powder properties and final product critical quality attributes provides the basis for modulating granulation parameters in order to optimize product performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app