Add like
Add dislike
Add to saved papers

Apicobasal gradient of left ventricular myocardial edema underlies transient T-wave inversion and QT interval prolongation (Wellens' ECG pattern) in Tako-Tsubo cardiomyopathy.

BACKGROUND: Tako-Tsubo cardiomyopathy (TTC) presents with chest pain, ST-segment elevation followed by T-wave inversion and QT interval prolongation (Wellens' electrocardiographic [ECG] pattern), and left ventricular dysfunction, which may mimic an acute coronary syndrome.

OBJECTIVE: To assess the pathophysiologic basis of the Wellens' ECG pattern in TTC by characterization of underlying myocardial changes by using cardiac magnetic resonance (CMR).

METHODS: The study population included 20 consecutive patients with TTC (95% women; mean age 65.3 ± 10.4 years) who underwent CMR studies both in the initial phase and after 3-month follow-up by using a protocol that included cine images, T2-weighted sequences for myocardial edema, and post-contrast sequences for late gadolinium enhancement. Quantitative ECG indices of repolarization, such as maximal amplitude of negative T waves, sum of the amplitudes of negative T waves, and maximum corrected QT interval (QTc max), were correlated to CMR findings.

RESULTS: At the time of initial CMR study, there was a significant linear correlation between the apicobasal ratio of T2-weighted signal intensity for myocardial edema and the maximal amplitude of negative T waves (ρ = 0.498; P = .02), sum of the amplitudes of negative T waves (ρ = 0.483; P = .03), and maximum corrected QT interval (ρ = 0.520; P = .02). Repolarization indices were unrelated to either late gadolinium enhancement or quantitative cine parameters. Wellens' ECG abnormalities and myocardial edema showed a parallel time course of development and resolution on initial and follow-up CMR studies.

CONCLUSIONS: Our study results show that the ischemic-like Wellens' ECG pattern in TTC coincides and quantitatively correlates with the apicobasal gradient of myocardial edema as evidenced by using CMR. Dynamic negative T waves and QTc prolongation are likely to reflect the edema-induced transient inhomogeneity and dispersion of repolarization between apical and basal left ventricular regions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app