JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles.

ACS Nano 2012 October 24
Nonradiative energy transfer to metal nanoparticles is a technique used for optical-based distance measurements which is often implemented in sensing. Both Förster resonant energy transfer (FRET) and nanometal surface energy transfer (NSET) mechanisms have been proposed for emission quenching in proximity to metal nanoparticles. Here quenching of emission of colloidal quantum dots in proximity to a monolayer of gold nanoparticles is investigated. Five differently sized CdTe quantum dots are used to probe the wavelength dependence of the quenching mechanism as their emission peak moves from on resonance to off resonance with respect to the localized surface plasmon peak of the gold nanoparticle layer. The gold nanoparticle concentration and distance dependences of energy transfer are discussed. Photoluminescence quenching and lifetime data are analyzed using both FRET and NSET models and the extracted characteristic distances are compared with theory. Good agreement with FRET theory has been found for quantum dots with emission close to the localized surface plasmon resonance, though larger than expected Förster radii are observed for quantum dots with emission red-shifted with respect to the localized surface plasmon peak. Closer agreement between experimental and theoretical characteristic distances can be found across the full wavelength range within a NSET approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app