Pollution characteristics of ambient volatile organic compounds (VOCs) in the southeast coastal cities of China

Lei Tong, Xu Liao, Jinsheng Chen, Hang Xiao, Lingling Xu, Fuwang Zhang, Zhenchuan Niu, Jianshuan Yu
Environmental Science and Pollution Research International 2013, 20 (4): 2603-15
With the rapid urbanization, the southeast coastal cities of China are facing increasing air pollution in the past decades. Large emissions of VOCs from vehicles and petrochemical factories have contributed greatly to the local air quality deterioration. Investigating the pollution characteristics of VOCs is of great significance to the environmental risk assessment and air quality improvement. Ambient VOC samples were collected simultaneously from nine coastal cities of southeast China using the Tedlar bags, and were subsequently preprocessed and analyzed using a cryogenic preconcentrator and a gas chromatography-mass spectrometry system, respectively. VOC compositions, spatial distributions, seasonal variations and ozone formation potentials (OPFs) were discussed. Results showed that methylene chloride, toluene, isopropyl alcohol and n-hexane were most abundant species, and oxygenated compounds, aromatics and halogenated hydrocarbons were most abundant chemical classes (62.5-95.6% of TVOCs). Both industrial and vehicular exhausts might contribute greatly to the VOC emissions. The VOC levels in the southeast coastal cities of China were sufficiently high (e.g., 6.5 μg m(-3) for benzene) to pose a health risk to local people. A more serious pollution state was found in the southern cities of the study region, while higher VOC levels were usually observed in winter. The B/T ratio (0.26 ± 0.09) was lower than the typical ratio (ca. 0.6) for roadside samples, while the B/E (1.6-7.6) and T/E (7.2-26.8) ratios were higher than other cities around the world, which indicated a unique emission profile in the study region. Besides, analysis on ozone formation potentials (OFPs) indicated that toluene was the most important species in ozone production with the accountabilities for total OFPs of 22.6 to 59.6%.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"