JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Correlations between the levels of Oct4 and Nanog as a signature for naïve pluripotency in mouse embryonic stem cells.

Stem Cells 2012 December
The pluripotent state is traditionally associated with large absolute levels of certain transcription factors such as Nanog and Oct4. Here, we present experimental observations using quantitative immunofluorescence that pluripotency in mouse embryonic stem cells (mESCs) is established by specific ratios between Oct4 and Nanog. When cells are grown in 2i conditions, they exhibit uniform levels of pluripotency and this is associated with a high correlation between the levels of Oct4 and Nanog in individual cells. The correlation is lost when cells differentiate. Our results suggest that the correlation between these two factors and the distribution of Oct4/Nanog ratios can be used as quantifiers to distinguish between three subpopulations in an mESC culture: pluripotent, lineage-primed, and differentiating cells. When we apply these quantifiers to cells with lower levels of Nanog or mutant for β-Catenin or Tcf3, the results suggest that these cells exhibit higher probability of differentiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app