JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Loss of zygotic NUP107 protein causes missing of pharyngeal skeleton and other tissue defects with impaired nuclear pore function in zebrafish embryos.

The Nup107-160 multiprotein subcomplex is essential for the assembly of nuclear pore complexes. The developmental functions of individual constituents of this subcomplex in vertebrates remain elusive. In particular, it is unknown whether Nup107 plays an important role in development of vertebrate embryos. Zebrafish nup107 is maternally expressed and its zygotic expression becomes prominent in the head region and the intestine from 24 h postfertilization (hpf) onward. In this study, we generate a zebrafish mutant line, nup107(tsu068Gt), in which the nup107 locus is disrupted by an insertion of Tol2 transposon element in the first intron and as a result it fails to produce normal transcripts. Homozygous nup107(tsu068Gt) mutant embryos exhibit tissue-specific defects after 3 days postfertilization (dpf), including loss of the pharyngeal skeletons, degeneration of the intestine, absence of the swim bladder, and smaller eyes. These mutants die at 5-6 days. Extensive apoptosis occurs in the affected tissues, which is partially dependent on p53 apoptotic pathways. In cells of the defective tissues, FG-repeat nucleoporins are disturbed and nuclear pore number is reduced, leading to impaired translocation of mRNAs from the nucleus to the cytoplasm. Our findings shed new light on developmental function of Nup107 in vertebrates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app