JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Adverse listening conditions and memory load drive a common α oscillatory network.

Journal of Neuroscience 2012 September 6
How does acoustic degradation affect the neural mechanisms of working memory? Enhanced alpha oscillations (8-13 Hz) during retention of items in working memory are often interpreted to reflect increased demands on storage and inhibition. We hypothesized that auditory signal degradation poses an additional challenge to human listeners partly because it draws on the same neural mechanisms. In an adapted Sternberg paradigm, auditory memory load and acoustic degradation were parametrically varied and the magnetoencephalographic response was analyzed in the time-frequency domain. Notably, during the stimulus-free delay interval, alpha power monotonically increased at central-parietal sensors as functions of memory load (higher alpha power with more memory load) and of acoustic degradation (also higher alpha power with more severe acoustic degradation). This alpha effect was superadditive when highest load was combined with most severe degradation. Moreover, alpha oscillatory dynamics during stimulus-free delay were predictive of response times to the probe item. Source localization of alpha power during stimulus-free delay indicated that alpha generators in right parietal, cingulate, supramarginal, and superior temporal cortex were sensitive to combined memory load and acoustic degradation. In summary, both challenges of memory load and acoustic degradation increase activity in a common alpha-frequency network. The results set the stage for future studies on how chronic or acute degradations of sensory input affect mechanisms of executive control.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app