Add like
Add dislike
Add to saved papers

A novel murine femoral segmental critical-sized defect model stabilized by plate osteosynthesis for bone tissue engineering purposes.

Mouse models are invaluable tools for mechanistic and efficacy studies of the healing process of large bone defects resulting in atrophic nonunions, a severe medical problem and a financial health-care-related burden. Models of atrophic nonunions are usually achieved by providing a highly stable biomechanical environment. For this purpose, external fixators have been investigated, but plate osteosynthesis, despite its high clinical relevance, has not yet been considered in mice. We hereby proposed and investigated the use of an internal osteosynthesis for stabilizing large bone defects. To this aim, a 3.5-mm-long segmental bone defect was induced in the mid-shaft of the femur using a Gigli saw and a jig. Bone fixation was performed using a titanium microlocking plate with four locking screws. The bone defect was either left empty or filled with a syngenic bone graft or filled with a coralline scaffold. Healing was monitored using radiographs. The healing process was further assessed using microcomputed tomography and histology 10 weeks after surgery. With the exception of one mouse that died during the surgical procedure, no complications were observed. A stable and reproducible bone fixation as well as a reproducible fixation of the implanted materials with full weight bearing was obtained in all animals tested. Nonunion was consistently observed in the group in which the defects were left empty. Bone union was obtained with the syngenic bone grafts, providing evidence that, although such defects were of critical size, bone healing was possible when the gold-standard material was used to fill the defect. Although new bone formation was greater in the coralline scaffold group than in the left-empty animal group, it remained limited and localized close to the bony edges, a consequence of the critical size of such bone defect. Our study established a reproducible, clinically relevant, femoral, atrophic nonunion, critical-sized defect, low morbidity mouse model. The present study was successful in designing and testing in a small animal model, a novel surgical method for the assessment of bone repair; this model has the potential to facilitate investigations of the molecular and cellular events involved in bone regeneration in load-bearing, segmental-bone defects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app