Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Female mice are more susceptible to nonalcoholic fatty liver disease: sex-specific regulation of the hepatic AMP-activated protein kinase-plasminogen activator inhibitor 1 cascade, but not the hepatic endotoxin response.

Molecular Medicine 2012 December 7
As significant differences between sexes were found in the susceptibility to alcoholic liver disease in human and animal models, it was the aim of the present study to investigate whether female mice also are more susceptible to the development of non-alcoholic fatty liver disease (NAFLD). Male and female C57BL/6J mice were fed either water or 30% fructose solution ad libitum for 16 wks. Liver damage was evaluated by histological scoring. Portal endotoxin levels and markers of Kupffer cell activation and insulin resistance, plasminogen activator inhibitor 1 (PAI-1) and phosphorylated adenosine monophosphate-activated protein kinase (pAMPK ) were measured in the liver. Adiponectin mRNA expression was determined in adipose tissue. Hepatic steatosis was almost similar between male and female mice; however, inflammation was markedly more pronounced in livers of female mice. Portal endotoxin levels, hepatic levels of myeloid differentiation primary response gene (88) (MyD88) protein and of 4-hydroxynonenal protein adducts were elevated in animals with NAFLD regardless of sex. Expression of insulin receptor substrate 1 and 2 was decreased to a similar extent in livers of male and female mice with NAFLD. The less pronounced susceptibility to liver damage in male mice was associated with a superinduction of hepatic pAMPK in these mice whereas, in livers of female mice with NAFLD, PAI-1 was markedly induced. Expression of adiponectin in visceral fat was significantly lower in female mice with NAFLD but unchanged in male mice compared with respective controls. In conclusion, our data suggest that the sex-specific differences in the susceptibility to NAFLD are associated with differences in the regulation of the adiponectin-AMPK-PAI-1 signaling cascade.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app