COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Load-distributing band improves ventilation and hemodynamics during resuscitation in a porcine model of prolonged cardiac arrest.

BACKGROUND: The use of mechanical cardiopulmonary resuscitation (CPR) has great potential for the clinical setting. The purpose of present study is to compare the hemodynamics and ventilation during and after the load-distributing band CPR, versus the manual CPR in a porcine model of prolonged cardiac arrest, and to investigate the influence of rescue breathing in different CPR protocols.

METHODS: Sixty-four male pigs (n = 16/group), weighing 30 ± 2 kg, were induced ventricular fibrillation and randomized into four resuscitation groups: continuous load-distributing band CPR without rescue ventilation (C-CPR), load-distributing band 30:2 CPR (A-CPR), load-distributing band CPR with continuous rescue breathing (10/min) (V-CPR) or manual 30:2 CPR (M-CPR). Respiratory variables and hemodynamics were recorded continuously; blood gas was analyzed.

RESULTS: Tidal volume produced by compressions in the A-, C- and V-CPR groups were significantly higher compared with the M-CPR group (all p < 0.05). Coronary perfusion pressure of the V-CPR group was significantly lower than the C-CPR group (p < 0.01), but higher than the M-CPR group. The increasing of lung dead space after restoration of spontaneous circulation was significantly greater in the M-CPR group compared with the A-, C- and V-CPR groups (p < 0.01). Blood pH gradually decreased and was lower in the M-CPR group than that in the A-, C- and V-CPR groups (p < 0.01). PaO2 of the A-, C- and V-CPR groups were significantly higher and PaCO2 were significantly lower compared with the M-CPR (both p < 0.05). Cerebral performance categories were better in the A-, C- and V-CPR groups compared with the M-CPR group (p < 0.0001).

CONCLUSIONS: The load-distributing band CPR significantly improved respiratory parameters during resuscitation by augmenting passive ventilation, and significantly improved coronary perfusion pressure. The volume of ventilation produced by the load-distributing band CPR was adequate to maintain sufficient gas exchange independent of rescue breathing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app