Add like
Add dislike
Add to saved papers

Changes in regional tissue oxygenation saturation and desaturations after red blood cell transfusion in preterm infants.

OBJECTIVE: The study investigated the ability of near-infrared spectroscopy (NIRS) to detect subgroups of preterm infants who benefit most from red blood cell (RBC) transfusion in regard to cerebral/renal tissue oxygenation (i) and the number of general oxygen desaturation below 80% (SaO(2) <80%) (ii).

STUDY DESIGN: Cerebral regional (crSO(2)) and peripheral regional (prSO(2)) NIRS parameters were recorded before, during, immediately after and 24 h after transfusion in 76 infants. Simultaneously, SaO(2) <80% were recorded by pulse oximetry. To answer the basic question of the study, all preterm infants were divided into two subgroups according to their pretransfusion crSO(2) values (<55% and ≥55%). This cutoff was determined by a k-means clustering analysis.

RESULT: crSO(2) and prSO(2) increased significantly in the whole study population. A stronger increase (P<0.0005) of both was found in the subgroup with pretransfusion crSO(2) values <55%. Regarding the whole population, a significant decrease (P<0.05) of episodes with SaO(2) <80% was observed. The subgroup with crSO(2) baselines <55% had significant (P<0.05) more episodes with SaO(2) <80% before transfusion. During and after transfusion, the frequency of episodes with SaO(2) <80% decreased more in this group compared with the group with crSO(2) baselines ≥55%.

CONCLUSION: NIRS measurement is a simple, non-invasive method to monitor regional tissue oxygenation and the efficacy of RBC transfusion. Infants with low initial NIRS values benefited most from blood transfusions regarding SaO(2) <80%, which may be important for their general outcome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app