Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Comparative evaluation of 18F-labeled glutamic acid and glutamine as tumor metabolic imaging agents.

UNLABELLED: (18)F-labeled (2S,4R)-4-fluoro-l-glutamine (4F-GLN) has demonstrated high uptake in tumor cells that undergo high growth and proliferation. Similar tumor targeting properties have also been observed for (18)F-labeled (2S,4R)-4-fluoro-l-glutamate (4F-GLU), suggesting that both are useful imaging agents. A new labeling procedure facilitates the preparation of (18)F-(2S,4R)4F-GLN and (18)F-(2S,4R)4F-GLU with confirmed radiochemical and enantiomeric purity. Here, we report the preparation and comparative evaluation of (18)F-(2S,4R)4F-GLN and (18)F-(2S,4R)4F-GLU as tumor metabolic imaging agents.

METHODS: Uptake of enantiomerically pure (18)F-(2S,4R)4F-GLN and (18)F-(2S,4R)4F-GLU was determined in 3 tumor cell lines (9L, SF188, and PC-3) at selected time points. The in vitro cell uptake mechanism was evaluated by inhibition studies in 9L cells. In vivo biodistribution and PET studies were performed on male F344 rats bearing 9L tumor xenografts.

RESULTS: In vitro cell uptake studies showed that (18)F-(2S,4R)4F-GLN displayed higher uptake than (18)F-(2S,4R)4F-GLU. Amino acid transport system ASC (alanine-serine-cysteine-preferring; in particular, its subtype ASCT2 [SLC1A5 gene]) and system X(c)(-) (SLC7A11 gene) played an important role in transporting (18)F-(2S,4R)4F-GLN and (18)F-(2S,4R)4F-GLU, respectively, across the membrane. After being transported into cells, a large percentage of (18)F-(2S,4R)4F-GLN was incorporated into protein, whereas (18)F-(2S,4R)4F-GLU mainly remained as the free amino acid in its original form. In vivo studies of (18)F-(2S,4R)4F-GLN in the 9L tumor model showed a higher tumor uptake than (18)F-(2S,4R)4F-GLU, whereas (18)F-(2S,4R)4F-GLU had a slightly higher tumor-to-background ratio than (18)F-(2S,4R)4F-GLN. Imaging studies showed that both tracers had fast accumulation in 9L tumors. Compared with (18)F-(2S,4R)4F-GLU, (18)F-(2S,4R)4F-GLN exhibited prolonged tumor retention reflecting its incorporation into intracellular macromolecules.

CONCLUSION: Differences in uptake and metabolism in tumor cells were found between (18)F-(2S,4R)4F-GLN and (18)F-(2S,4R)4F-GLU. Both agents are potentially useful as metabolic tracers for tumor imaging.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app