Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Partially overlapping substrate specificities of staphylococcal group A sortases.

Proteomics 2012 October
Sortases catalyze the covalent attachment of proteins with a C-terminal LPxTG motif to the cell walls of Gram-positive bacteria. Here, we show that deletion of the srtA genes of Staphylococcus aureus and Staphylococcus epidermidis resulted in the dislocation of several LPxTG proteins from the cell wall to the growth medium. Nevertheless, proteomics and Western blotting analyses revealed that substantial amounts of the identified proteins remained cell wall bound through noncovalent interactions. The protein dislocation phenotypes of srtA mutants of S. aureus and S. epidermidis were reverted by ectopic expression of srtA genes of either species. Interestingly, S. epidermidis contains a second sortase A, which was previously annotated as ``SrtC.'' Ectopic expression of this SrtC in srtA mutant cells reverted the dislocation of some, but not all, cell wall associated proteins. Similarly, defects in biofilm formation were reverted by ectopic expression of SrtC in some, but not all, tested srtA mutant strains. Finally, overexpression of SrtA resulted in increased levels of biofilm formation in some tested strains. Taken together, these findings show that the substrate specificities of SrtA and SrtC overlap partially, and that sortase levels may be limiting for biofilm formation in some staphylococci.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app