JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Folate-modified gold nanoclusters as near-infrared fluorescent probes for tumor imaging and therapy.

Nanoscale 2012 September 29
Ultra-small gold nanoclusters (Au NCs) are highly promising materials for tumor imaging and therapy because of their low toxicity, intrinsic fluorescence, and the availability of multifunctional groups for covalent linkage of diverse bioactive molecules. Au NCs stabilized by bovine serum albumin (BSA) were prepared via an improved "green" synthetic routine. To ameliorate the selective affinity of Au NCs for high folate receptor (FR) expressing tumors, folic acid (FA) was immobilized on the surface of Au NCs. Subsequently, a near-infrared (NIR) fluorescent dye MPA was conjugated with Au-FA NCs for in vitro and in vivo fluorescence imaging. Similarly, Doxorubicin (DOX), a widely used clinical anticancer drug, was also conjugated to the folate-modified Au NCs to form a prodrug (Au-FA-DOX). Cellular and in vivo acute toxicity studies demonstrated the low toxicity of the Au-FA-MPA to normal cells and tissues. Additionally, in vitro and in vivo study of the dynamic behavior and targeting ability of Au-FA-MPA to different tumors validated the high selective affinity of Au-FA-MPA to FR positive tumors. With regard to the Au-FA-DOX, high anti-tumor activity was displayed by this pro-drug due to the FR mediated uptake. Herein, all of the results supported the potential of using ligand-modified Au NCs for tumor imaging and targeted therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app