Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Daidzein induced apoptosis via down-regulation of Bcl-2/Bax and triggering of the mitochondrial pathway in BGC-823 cells.

Daidzein belongs to the group of isoflavones, found in a wide variety of plant-derived foods, especially in soybeans and soy-based foods. In this study, the effect of daidzein on human gastric carcinoma cells (BGC-823) and its mechanism were investigated. MTT assay was applied in the detection of the inhibitory effects of daidzein on cell proliferation. Hoechst-propidium iodide staining and flow cytometry were used to examine the apoptosis as well as the mitochondrial transmembrane potential. Western blotting was performed to detect the expression of apoptosis-associated proteins: cleaved PARP, cleaved caspase-9, cleaved caspase-3, Bcl-2, and Bax. Daidzein significantly inhibited the growth and proliferation of human gastric carcinoma cells (BGC-823) in a concentration- and time-dependent manner. Furthermore, it was found that an insult of daidzein to BGC-823 cells caused them to die by disruption of mitochondrial transmembrane potential, demonstrated not only by staining dead cells for phosphatidylserine but also by the up-regulation (cleaved PARP, cleaved caspase-9, cleaved caspase-3, Bax) and down-regulation (Bcl-2) of proteins associated with apoptosis and survival; whereas, the pan-caspase inhibitor z-VAD-fmk could partially rescue cells against damage of daidzein. Taken together, the results of this study demonstrate that daidzein significantly induces apoptosis via a mitochondrial pathway. Specifically, daidzein induced a change in the Bax/Bcl-2 ratios and activation of caspases-3 and -9 and the cleavage of PARP. Therefore, daidzein has the potential for use as a therapeutic agent for the treatment of gastric carcinoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app