Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Hexane extracts of garlic cloves induce apoptosis through the generation of reactive oxygen species in Hep3B human hepatocarcinoma cells.

Oncology Reports 2012 November
Garlic (Allium sativum) compounds have recently received increasing attention due to their cancer chemopreventive properties, and their anticancer activities are extensively reported in many cancer cell lines. However, the anticancer activity and the signaling pathway associated with the induction of apoptosis by extracts of garlic cloves have not been elucidated. In this study, we examined the effects of hexane extracts of garlic cloves (HEGCs) on reactive oxygen species (ROS) production and the association of these effects with apoptotic cell death, using a Hep3B human hepatocarcinoma cell line in vitro. The results demonstrated that HEGCs mediate ROS production, and that this mediation is followed by a collapse of mitochondrial membrane potential (MMP, ΔΨm), the downregulation of anti-apoptotic Bcl-2 and Bcl-xL and the activation of caspase-9 and -3. HEGCs also promoted the activation of caspase-8 and the downregulation of Bid, a BH3-only pro-apoptotic member of the Bcl-2. However, the apoptotic phenomena displayed by HEGCs were significantly diminished by the presence of z-VAD-fmk (non-selective caspase inhibitor). Moreover, N-acetyl-L-cysteine (NAC), a widely used ROS scavenger, effectively blocked the HEGC-induced apoptotic effects via the inhibition of ROS production and MMP collapse. These observations clearly indicate that HEGC-induced ROS are key mediators of MMP collapse, which leads to the induction of apoptosis, followed by caspase activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app