Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Radiosensitizing effects of arsenic trioxide on MCF-7 human breast cancer cells exposed to 89 strontium chloride.

Oncology Reports 2012 November
The aim of this study was to investigate the radiosensitizing effects of arsenic trioxide (As2O3) on MCF-7 human breast cancer cells irradiated with 89 strontium chloride (89SrCl2). The 50% inhibitory concentration (IC50) was calculated from results of an MTT assay. The concentration of As2O3 less than 20% IC50 was selected for subsequent experiments. Cells were treated with As2O3 and 89SrCl2. Morphological changes of cells were observed under an inverted microscope. The radiosensitivity enhancing ratio (SER) was computed based on a clone formation assay. Cell cycle distribution and apoptosis were measured by flow cytometry (FCM). Expression of Bcl-2 and Bax at both the mRNA and protein levels was assessed by RT-PCR and western blotting. The IC50 of As2O3 at 24 h was 11.7 µM. Doses of As2O3 (1 and 2 µM) were used in combination treatments and SER values were 1.25 and 1.79, respectively. As2O3 significantly suppressed cell growth, caused G2/M arrest, enhanced cell death and apoptosis induced by 89SrCl2 and decreased expression of the Bcl-2 gene. Since expression of Bax was unchanged following treatment, As2O3 effectively reduced the Bcl-2/Bax ratio. As2O3 (1-2 µM) enhances the cytotoxic effects of 89SrCl2 on the MCF-7 human breast cancer cell line by inducing G2 phase delay and promoting apoptosis through the reduction of the Bcl-2/Bax ratio.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app