JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The PI3K/Akt/mTOR signaling pathway mediates insulin-like growth factor 1-induced E-cadherin down-regulation and cell proliferation in ovarian cancer cells.

Cancer Letters 2012 December 31
Insulin-like growth factor 1 (IGF1) is produced by ovarian cancer cells and it has been suggested that it plays an important role in tumor progression. In this study, we report that IGF1 treatment down-regulated E-cadherin by up-regulating E-cadherin transcriptional repressors, Snail and Slug, in human ovarian cancer cells. The pharmacological inhibition of phosphatidylinositol-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) suggests that PI3K/Akt/mTOR signaling is required for IGF1-induced E-cadherin down-regulation. Moreover, IGF1 up-regulated Snail and Slug expression via the PI3K/Akt/mTOR signaling pathway. Finally, IGF1-induced cell proliferation was abolished by inhibiting PI3K/Akt/mTOR signaling. This study demonstrates a novel mechanism in which IGF1 down-regulates E-cadherin expression through the activation of PI3K/Akt/mTOR signaling and the up-regulation of Snail and Slug in human ovarian cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app