Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The effect of varying the plantarflexion resistance of an ankle-foot orthosis on knee joint kinematics in patients with stroke.

Gait & Posture 2013 March
Ankle-foot orthoses (AFOs) can improve gait in patients with hemiplegia. However, it is anecdotally known that excessive plantarflexion resistance of an AFO could induce undesired knee flexion at early stance. The aim of this study was to systematically investigate the effect of varying the degrees of plantarflexion resistance of an AFO on knee flexion angles at early stance in five subjects with chronic stroke who demonstrated two clear knee flexion peaks at early stance and swing. Each subject wore an experimental AFO constructed with an oil-damper type ankle joint and was instructed to walk at their self-selected walking speed under five plantarflexion resistance conditions. The sagittal plane ankle and knee joint kinematics and gait speed were analyzed using a 3-D Motion Analysis System. A number of significant differences (P<0.005) in maximum knee flexion angles at early stance amongst different plantarflexion resistance conditions were revealed. The knee flexion angle was 23.80 (3.25) degrees under the free hinge joint condition (condition 1), while that was 26.09 (3.79) degrees under the largest resistance condition (condition 5). It was therefore demonstrated that increasing the plantarflexion resistance of an AFO would induce more knee flexion at early stance phase in patients with stroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app