JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Modulation of brain activity during a Stroop inhibitory task by the kind of cognitive control required.

This study used a proportion congruency manipulation in the Stroop task in order to investigate, at the behavioral and brain substrate levels, the predictions derived from the Dual Mechanisms of Control (DMC) account of two distinct modes of cognitive control depending on the task context. Three experimental conditions were created that varied the proportion congruency: mostly incongruent (MI), mostly congruent (MC), and mostly neutral (MN) contexts. A reactive control strategy, which corresponds to transient interference resolution processes after conflict detection, was expected for the rare conflicting stimuli in the MC context, and a proactive strategy, characterized by a sustained task-relevant focus prior to the occurrence of conflict, was expected in the MI context. Results at the behavioral level supported the proactive/reactive distinction, with the replication of the classic proportion congruent effect (i.e., less interference and facilitation effects in the MI context). fMRI data only partially supported our predictions. Whereas reactive control for incongruent trials in the MC context engaged the expected fronto-parietal network including dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex, proactive control in the MI context was not associated with any sustained lateral prefrontal cortex activations, contrary to our hypothesis. Surprisingly, incongruent trials in the MI context elicited transient activation in common with incongruent trials in the MC context, especially in DLPFC, superior parietal lobe, and insula. This lack of sustained activity in MI is discussed in reference to the possible involvement of item-specific rather than list-wide mechanisms of control in the implementation of a high task-relevant focus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app