JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., INTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Biochemical assay for histone H2A.Z replacement by the yeast SWR1 chromatin remodeling complex.

The evolutionarily conserved histone variant H2A.Z has an important role in the regulation of gene expression and the establishment of a buffer to the spread of silent heterochromatin. Saccharomyces cerevisiae Swr1, a Swi2/Snf2-related ATPase, is the catalytic core of a multisubunit chromatin remodeling enzyme, called the SWR1 complex, that efficiently replaces conventional histone H2A in nucleosomes with histone H2A.Z. Swr1 is required for the deposition of histone H2A.Z at stereotypical promoter locations in vivo, and Swr1 and H2A.Z commonly regulate a subset of yeast genes. Here, we describe an integrated nucleosome assembly-histone replacement system whereby histone exchange by chromatin remodeling activities may be analyzed in vitro. The system demonstrates ATP- and SWR1-complex-dependent replacement of histone H2A for histone H2A.Z on a preassembled nucleosome array. This system may also be adapted to analyze dynamic interactions between chromatin remodeling and modifying enzymes, histone chaperones, and nucleosome substrates containing canonical, variant, or covalently modified histones.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app