OPEN IN READ APP
JOURNAL ARTICLE

Exciton self trapping in photosynthetic pigment-protein complexes studied by single-molecule spectroscopy

Ralf Kunz, Kõu Timpmann, June Southall, Richard J Cogdell, Arvi Freiberg, Jürgen Köhler
Journal of Physical Chemistry. B 2012 September 13, 116 (36): 11017-23
22908848
Evidence for the formation of self-trapped exciton states in photosynthetic antenna complexes is provided by comparing single-molecule fluorescence-excitation and emission spectra that have been recorded from the same individual LH2 complex from Rhodopseudomonas acidophila . While the excitation spectra showed the signatures for the B800 and B850 bands as observed previously, two distinctively different types of emission spectra were found. One group of antenna complexes shows spectra with a relatively narrow spectral profile with a clear signature of a zero-phonon line, whereas the other group of complexes displays spectra that consist only of a broad featureless band. Analysis of these data reveals clear correlations between the spectral position of the emission, the width of the spectral profile, and the associated electron-phonon coupling strength.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
22908848
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"