Add like
Add dislike
Add to saved papers

Wortmannin reduces metastasis and angiogenesis of human breast cancer cells via nuclear factor-κB-dependent matrix metalloproteinase-9 and interleukin-8 pathways.

OBJECTIVE: To investigate whether inhibition of Akt phosphorylation by the phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin, reduces metastasis and angiogenesis in a human breast cancer cell line via nuclear factor (NF)-κB-dependent matrix metalloproteinase (MMP)-9 and interleukin (IL)-8 pathways.

METHODS: MDA-MB-231 cells were treated with wortmannin 0-200 nM for 4 h. Restoration of Akt activity was evaluated by transfection of cells with constitutively active myristoylated Akt (myr-Akt). NF-κB, MMP-9 and IL-8 proteins were detected by electrophoretic mobility shift assay, Western blot or enzyme-linked immunosorbent assay. The chicken embryo chorio-allantoic membrane assay, cell motility and migration assays were used to evaluate angiogenesis and invasion in vitro. A mouse pseudo metastatic breast cancer model was used to assess the effects of wortmannin on metastasis and angiogenesis in vivo.

RESULTS: Wortmannin inhibited the phosphorylation of Akt, upregulation of NF-κB, MMP-9, IL-8, and in vitro cell invasion and angiogenesis, in a dose-dependent manner. Transfection of myr-Akt reversed the cellular and biochemical effects of wortmannin in vitro. Wortmannin also significantly inhibited tumour metastasis and angiogenesis in vivo.

CONCLUSION: The findings of the present study suggest that wortmannin inhibits metastasis and angiogenesis in breast cancer cells via PI3K/Akt/NF-κB-mediated MMP-9 and IL-8 signalling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app