Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Fabrication of conducting polymer micro/nanostructures coated with Au nanoparticles for electrochemical sensors.

Polypyrrole (PPy) micro/nanostructures coated with Au nanoparticles were prepared by electropolymerization and electro-deposition. Two types of PPy structures, micro-embossed and nanowire forest, were synthesized on patterned gold electrodes using different aqueous solutions, and Au nanoparticles were coated onto the PPy micro/nanostructure surface. The size of the Au nanoparticles ranged from 10 to 100 nm, and the maximum density of the nanoparticles was 73 particles/microm2. The small size and high density of the Au nanoparticles were achieved by optimizing the deposition time and chloroauric acid (HAuCl4) concentration. Cyclic voltammograms of ferrocyanide oxidation showed that the PPy micro/nanostructures coated with Au nanoparticles exhibit good electrochemical activity. These high-performance electrodes can be used in electrochemical sensors because the Au nanoparticles enhance electron transfer and provide a binding site for biomarker molecules, such as DNA, protein, and aptamers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app