COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Technical note: comparison between single and multiview simulated DXA configurations for reconstructing the 3D shape and bone mineral density distribution of the proximal femur.

Medical Physics 2012 August
PURPOSE: Dual-energy x-ray absorptiometry (DXA) is used in clinical routine to provide a two-dimensional (2D) analysis of the bone mineral density (BMD). 3D reconstruction methods from 2D DXA images could improve the BMD analysis. To find the optimal configuration that should be used in clinical routine, this paper relies on a 3D reconstruction method from DXA images to compare the accuracy that can be obtained from one single-view and from multiview DXA images (two to four projections).

METHODS: The 3D reconstruction method uses a statistical model and a nonrigid registration technique to recover in 3D the shape and the BMD distribution of the proximal femur. The accuracy was evaluated in vivo by comparing 3D reconstructions obtained from simulated DXA images of 30 patients (using between one and four DXA views) with quantitative computed tomography reconstructions.

RESULTS: This comparison showed that the use of one single DXA provides accurate 3D reconstructions (mean shape accuracy of 1.0 mm and BMD distribution errors of 7.0%). Among the multiview configurations, the use of two views (0° and 45°) was the best compromise, increasing the accuracy of pose (mean accuracy of 0.7°/1.2°/0.9° against 1.0°/3.5°/3.3° for the single view), reducing slightly the BMD errors (5.7%) while maintaining the same shape accuracy.

CONCLUSIONS: The use of two views constitutes an interesting configuration when multiview DXA devices are available in clinical routine. However, the use of only one single view remains an accurate solution to recover the shape and the BMD distribution in 3D, with the advantage of a higher potential for clinical translation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app