Add like
Add dislike
Add to saved papers

Blast injuries to the human mandible: development of a finite element model and a preliminary finite element analysis.

Injury 2012 November
OBJECTIVE: In an attempt to explore new tools for constructing a model of blast injuries to the human mandible, a finite element method was used. This model allowed us to perform dynamic simulations and analyse the injury processes and severity of trauma to the human mandible from an explosion striking at the middle mandibular angle.

METHODS: A 3D finite element model of the human mandible was created using digitally visualised CT scanning data of the human mandible. It was used to dynamically simulate the complete injury process of a blast event to a human mandible (at the middle mandibular angle) under the injury conditions of a 600 mg TNT explosion. The model was also used to elucidate the subsequent mandibular damage and the dynamic distribution of several biomechanical indices (e.g., stress, and strain). The resulting data were subjected to a comparative analysis.

RESULTS: Simulation was successfully conducted for injury events in which 600 mg of TNT exploded at 3 cm, 5 cm and 10 cm from the middle mandibular angle of a human mandible; specifically, the simulation included the dynamic injury processes and the distribution of stress and strain in various parts of the damaged mandible. A comparison of the simulation data revealed that different blast distances resulted in considerable variation in the severity and biological indices of the mandibular injury.

CONCLUSION: The finite element model was able to dynamically simulate the blast-initiated trauma processes to a human mandible, which allowed for investigation of the severity of damage to the mandible under different injury conditions. This model and the simulation method are conducive for applications in basic studies and clinical investigations of blast-initiated injury mechanisms of bone tissues.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app