Add like
Add dislike
Add to saved papers

The effects of genistein on transforming growth factor-β1-induced invasion and metastasis in human pancreatic cancer cell line Panc-1 in vitro.

BACKGROUND: Pancreatic cancer is a devastating disease with the worst mortality rate. Therefore, a rational strategy for future drug development is critical. Genistein is a small, biologically active flavonoid that is found in high amounts in soy. This important compound supports a wide variety of biological activities, but is best known for its ability to inhibit cancer progression.

METHODS: Transwell chamber assay was performed to determine the effect of genistein on the invasion of the human pancreatic cancer cell line Panc-1 induced by transforming growth factor-β1 (TGF-b1) in the different condition (5 ng/ml 24 hours and 10 ng/ml 48 hours); Reverse transcription-polymerase chain reaction (RT-PCR) was used to estimate the mRNA levels of urinary plasminogen activator (uPA), matrix metallopeptidase 2/9 (MMP-2/9), Smad4, E-Cadherin and Vimentin; Western blotting was used to detect the protein levels of uPA, E-Cadherin, ERK1/2, P38 and P-P38, and the activity of MMP-2/9 protein were detected by gelatin zymography assay method. Cells structure was observed and analyzed by microscopy.

RESULTS: Genistein can inhibit effectively TGF-b1-induced invasion and metastasis in Panc-1 by Transwell assay, which is through regulating the mRNA and protein expression of uPA and MMP2, but not MMP9 by RT-PCR/Western blotting, and is positively correlated with the concentration of genistein. At the same time, genistein also could improve the progress of epithelial-mesenchymal transition (EMT) via morphology observation using light microscopy/transmission electron microscopy (TEM), which is mediated by the down-regulation of E-cadherin and the up-regulation of vimentin.

CONCLUSIONS: TGF-b1 mediates EMT process via numerous intracellular signal transduction pathways. The potential molecular mechanisms are all or partly through Smad4-dependent and -independent pathways (p38 MAPK) to regulate the antitumor effect of genistein.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app