EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Ischemic postconditioning downregulates Egr-1 expression and attenuates postischemic pulmonary inflammatory cytokine release and tissue injury in rats.

BACKGROUND: The early growth response-1 (Egr-1) gene is upregulated after an ischemia-reperfusion (IR) challenge and upregulates target genes, such as proinflammatory cytokines. Ischemic postconditioning (IPostC) attenuates lung IR injury and reduces the systemic inflammatory response by activating heme oxygenase-1 (HO-1). However, the role of Egr-1 in IPostC protection against lung IR injury and inflammation and its interplay with HO-1 in IPostC protection is unknown.

MATERIALS AND METHODS: Sprague-Dawley rats or cultured A549 cells were subjected to IR or hypoxia/reoxygenation with or without IPostC or hypoxic postconditioning in the presence or absence of Egr-1 inhibition using Egr-1 antisense oligodeoxyrinonucleotide or Egr-1 small interfering RNA transfection. Lung injury was assessed by measuring the lung wet/dry weight ratio, histologic change, and malondialdehyde content. The amount of lactate dehydrogenase release in culture medium was detected to evaluate cell injury. The protein expression of Egr-1, interleukin (IL)-1β, and HO-1 was assessed by Western blot.

RESULTS: Inhibition of Egr-1 significantly attenuated lung IR injury and the inflammation response caused by IR or hypoxia/reoxygenation, as shown by the alleviated lung pathologic changes, decreased pulmonary malondialdehyde content, wet/dry ratio, reduced release of the cytokines tumor necrosis factor-α, IL-6, and IL-8 in the bronchoalveolar lavage, and reduced Egr-1, IL-1β, and HO-1 protein expression and HO-1 activity. IPostC or hypoxic postconditioning reduced the postischemic Egr-1 expression and conferred similar protection against lung IR injury as Egr-1 inhibition.

CONCLUSIONS: Egr-1 plays an important role in regulating the HO-1 production induced by IR or hypoxia/reoxygenation. Thus, downregulation of Egr-1 expression might represent one of the major mechanisms whereby IPostC confers protection against pulmonary IR insult.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app