JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

RNF8 regulates assembly of RAD51 at DNA double-strand breaks in the absence of BRCA1 and 53BP1.

Cancer Research 2012 October 2
The tumor suppressor protein BRCA1 localizes to sites of DNA double-strand breaks (DSB), promoting repair by homologous recombination through the recruitment of DNA damage repair proteins. In normal cells, homologous recombination largely depends on BRCA1. However, assembly of the pivotal homologous recombination regulator RAD51 can occur independently of BRCA1 in the absence of 53BP1, another DNA damage response protein. How this assembly process proceeds is unclear, but important to understand in tumor cell settings where BRCA1 is disabled. Here we report that RNF8 regulates BRCA1-independent homologous recombination in 53BP1-depleted cells. RNF8 depletion suppressed the recruitment of RAD51 to DSB sites without affecting assembly or phosphorylation of the replication protein RPA in neocarzinostatin-treated or X-ray-irradiated BRCA1/53BP1-depleted cells. Furthermore, RNF8/BRCA1/53BP1-depleted cells exhibited less efficient homologous recombination than BRCA1/53BP1-depleted cells. Intriguingly, neither RNF8 nor its relative RNF168 were required for RAD51 assembly at DSB sites in 53BP1-expressing cells. Moreover, RNF8-independent RAD51 assembly was found to be regulated by BRCA1. Together, our findings indicate a tripartite regulation of homologous recombination by RNF8, BRCA1, and 53BP1. In addition, our results predict that RNF8 inhibition may be a useful treatment of BRCA1-mutated/53BP1(low) cancers, which are considered resistant to treatment by PARP1 inhibitors and of marked current clinical interest.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app