Add like
Add dislike
Add to saved papers

The dosimetric impact of respiratory breast movement and daily setup error on tangential whole breast irradiation using conventional wedge, field-in-field and irregular surface compensator techniques.

To evaluate the dosimetric impact of respiratory breast motion and daily setup error on whole breast irradiation (WBI) using three irradiation techniques; conventional wedge (CW), field-in-field (FIF) and irregular surface compensator (ISC). WBI was planned for 16 breast cancer patients. The dose indices for evaluated clinical target volume (CTV(evl)), lung, and body were evaluated. For the anterior-posterior (AP) respiratory motion and setup error of a single fraction, the isocenter was moved according to a sine function, and the dose indices were averaged over one period. Furthermore, the dose indices were weighted according to setup error frequencies that have a normal distribution to model systematic and random setup error for the entire treatment course. In all irradiation techniques, AP movement has a significant impact on dose distribution. CTV(evl)D(95) (the minimum relative dose that covers 95 % volume) and V(95) (the relative volume receiving 95 % of the prescribed dose) were observed to significantly decrease from the original ISC plan when simulated for the entire treatment course. In contrast, the D(95), V(95) and dose homogeneity index did not significantly differ from those of the original plans for FIF and CW. With regard to lung dose, the effect of motion was very similar among all three techniques. The dosimetric impact of AP respiratory breast motion and setup error was largest for the ISC technique, and the second greatest effect was observed with the FIF technique. However, these variations are relatively small.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app