Source apportionment of polycyclic aromatic hydrocarbons in surface sediments of the Bohai Sea, China

Ning-Jing Hu, Peng Huang, Ji-Hua Liu, Xue-Fa Shi, De-Yi Ma, Ying Liu
Environmental Science and Pollution Research International 2013, 20 (2): 1031-40
A total of 112 surface sediment samples covering virtually the entire Bohai Sea were analyzed for polycyclic aromatic hydrocarbons (PAHs), in order to provide the extensive information of recent occurrence levels, distribution, possible sources, and potential biological risk of these compounds in this area. Surface sediment samples were collected from the Bohai Sea using a stainless steel grab sampler. Sixteen PAHs were determined by a Finnigan TRACE DSQ gas chromatography/mass spectrometry. Diagnostic ratios, cluster analysis, and principal component analysis (PCA) with multivariate linear regression (MLR) were performed to identify and quantitatively apportion the major sources of sedimentary PAHs in the Bohai Sea. Concentrations of total PAHs in the Bohai Sea ranged widely from 97.2 to 300.7 ng/g (mean, 175.7 ± 37.3 ng/g). High concentrations of PAHs were found in the vicinity of Luan River Estuary-Qinhuangdao Harbor, Cao River Estuary-Bohai Sea Center, and north of the Yellow River Estuary. The three-ring PAHs were most abundant, accounting for about 37 ± 5 % of total PAHs. The four-ring and five-ring PAHs were the next dominant ones comprising approximately 29 ± 7 and 23 ± 3 % of total PAHs, respectively. Concentrations of acenaphthylene, acenaphthene, and dibenz[a,h]anthracene are higher than Canadian interim marine sediment quality guideline values at most of the sites in the study area. Contamination levels of PAHs in the Bohai Sea were low in comparison with other coastal sediments in China and developed countries. The distribution pattern of PAHs and source identification implied that PAH contamination in the Bohai Sea mainly originates from petrogenic and pyrogenic sources. Further PCA/MLR analysis suggested that the contributions of spilled oil products (petrogenic), coal combustion, and traffic-related pollution were 39, 38, and 23 %, respectively. Pyrogenic sources (coal combustion and traffic-related pollution) contributed 61 % of anthropogenic PAHs to sediments, which indicates that energy consumption could be a dominant factor in PAH pollution in this area. Acenaphthylene, acenaphthene, and dibenz[a,h]anthracene are the three main species of PAHs with more ecotoxicological concern in the Bohai Sea.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"