JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

β-Adrenergic receptor stimulation causes cardiac hypertrophy via a Gβγ/Erk-dependent pathway.

Cardiovascular Research 2012 November 2
AIMS: Activation of the β(1)-adrenergic receptor and its G protein, G(s), induces cardiac hypertrophy. However, activation of classic Gα(s) effectors, adenylyl cyclases (AC) and protein kinase A, is not sufficient for induction of hypertrophy, which suggests the involvement of additional pathway(s) activated by G(s). Recently, we discovered that βγ subunits of G(q) induce phosphorylation of the extracellular regulated kinases 1 and 2 (Erk1/2) at threonine188 and thereby induce hypertrophy. Here we investigated whether β-adrenergic receptors might also induce cardiac hypertrophy via Erk(Thr188) phosphorylation.

METHODS AND RESULTS: β-Adrenergic receptor activation induced Erk(Thr188) phosphorylation in mouse hearts and in neonatal cardiomyocytes. Inhibition of Erk1/2 or overexpression of Erk(Thr188) phosphorylation-deficient mutants (Erk2(T188A) and Erk2(T188S)) significantly attenuated β-adrenergic cardiomyocyte hypertrophy in vitro. Erk activity was stimulated by both isoproterenol and the direct AC activator forskolin, but only isoproterenol induced Erk(Thr188) phosphorylation. Erk(Thr188) phosphorylation required Gβγ released from G(s) and was prevented by Gβγ inhibition. Similarly, isoproterenol, but not forskolin, induced nuclear accumulation of Erk and cardiomyocyte hypertrophy. Long-term application of isoproterenol in mice caused left ventricular hypertrophy and cardiac remodelling, and this was reduced in Erk2(T188S) transgenic mice, supporting the physiological relevance of Erk(Thr188) phosphorylation.

CONCLUSIONS: Activation of G(s) by β-adrenergic receptors leads to (i) canonical Erk1/2 activation via AC, and (ii) release of Gβγ, which then associates with activated Erk1/2 and induces Erk(Thr188) phosphorylation, causing nuclear accumulation of Erk and ultimately cardiomyocyte hypertrophy. These findings reveal a new pathway critically involved in β-adrenergically mediated cardiac hypertrophy and may yield new therapeutic strategies against hypertrophic remodelling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app