JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effect of the metals iron, copper and silver on fluorobenzene biodegradation by Labrys portucalensis.

Biodegradation 2013 April
Organic and metallic pollutants are ubiquitous in the environment. Many metals are reported to be toxic to microorganisms and to inhibit biodegradation. The effect of the metals iron, copper and silver on the metabolism of Labrys portucalensis F11 and on fluorobenzene (FB) biodegradation was examined. The results indicate that the addition of 1 mM of Fe(2+) to the culture medium has a positive effect on bacterial growth and has no impact in the biodegradation of 1 and 2 mM of FB. The presence of 1 mM of Cu(2+) was found to strongly inhibit the growth of F11 cultures and to reduce the biodegradation of 1 and 2 mM of FB to ca. 50 %, with 80 % of stoichiometrically expected fluoride released. In the experiments with resting cells, the FB degraded (from 2 mM supplied) was reduced ca. 20 % whereas the fluoride released was reduced to 45 % of that stoichiometrically expected. Ag(+) was the most potent inhibitor of FB degradation. In experiments with growing cells, the addition of 1 mM of Ag(+) to the culture medium containing 1 and 2 mM of FB resulted in no fluoride release, whereas FB degradation was only one third of that observed in control cultures. In the experiments with resting cells, the addition of Ag(+) resulted in 25 % reduction in substrate degradation and fluoride release was only 20 % of that stoichiometrically expected. The accumulation of catechol and 4-fluorocatechol in cultures supplemented with Cu(2+) or Ag(+) suggest inhibition of the key enzyme of FB metabolism-catechol 1,2-dioxygenase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app