JOURNAL ARTICLE

Oridonin induces apoptosis and autophagy in murine fibrosarcoma L929 cells partly via NO-ERK-p53 positive-feedback loop signaling pathway

Yuan-chao Ye, Hong-ju Wang, Lei Xu, Wei-wei Liu, Bin-bin Liu, Shin-Ichi Tashiro, Satoshi Onodera, Takashi Ikejima
Acta Pharmacologica Sinica 2012, 33 (8): 1055-61
22842735

AIM: To investigate the role of nitric oxide (NO) in oridonin-induced apoptosis and autophagy in murine fibrosarcoma L929 cells and the underlying molecular mechanisms.

METHODS: Cell viability was measured using MTT assay. Intracellular NO level, SubG(1) cell ratio and autophagy cell ratios were analyzed with flow cytometry after diaminofluorescein-2 diacetate (DAF-2DA), propidium iodide (PI) and monodansylcadaverine (MDC) staining, respectively. Protein expression was examined using Western blot analysis.

RESULTS: Exposure of L929 cells to oridonin (50 μmol/L) for 24 h led to intracellular NO production. Pretreatment with NOS inhibitor 1400w or L-NAME inhibited oridonin-induced apoptosis and autophagy in L929 cells. The pretreatment decreased the apoptosis-related protein Bax translocation and cytochrome c release, increased Bcl-2 level, reversed the autophagy-associated protein Beclin 1 increase and conversion of LC3 I to LC3 II. Furthermore, pretreatment with NO scavenger DTT completely inhibited oridonin-induced apoptosis and autophagy in L929 cells. In addition, oridonin (50 μmol/L) activated ERK and p53 in L929 cells, and the interruption of ERK and p53 activation by PD 98059, pifithrin-α, or ERK siRNA decreased oridonin-induced apoptosis and autophagy. The inhibition of NO production reduced oridonin-induced ERK and p53 activation, and NO production was down-regulated by blocking ERK and p53 activation.

CONCLUSION: NO played a pivotal role in oridonin-induced apoptosis and autophagy in L929 cells. Taken together with our previous finding that ERK contributes to p53 activation, it appears that NO, ERK, and p53 form a positive feedback loop. Consequently, we suggest that oridonin-induced apoptosis and autophagy are modulated by the NO-ERK-p53 molecular signaling mechanism in L929 cells.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
22842735
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"