Rosiglitazone, a PPAR-γ agonist, protects against striatal dopaminergic neurodegeneration induced by 6-OHDA lesions in the substantia nigra of rats

Eun Young Lee, Jeong Eun Lee, Jae Hyeon Park, In Chul Shin, Hyun Chul Koh
Toxicology Letters 2012 September 18, 213 (3): 332-44
Rosiglitazone is a commonly prescribed insulin-sensitizing drug with selective agonistic activity at the peroxisome proliferator-activated receptor-γ (PPARγ). Previously, rosiglitazone was shown to attenuate dopaminergic cell loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease (PD), an effect attributed to its anti-inflammatory properties. To elucidate the neuroprotective mechanisms of rosiglitazone, we investigated the effects of rosiglitazone on the expressions of striatal tyrosine hydroxylase (TH), cyclooxygenase-2 (COX-2) and glial fibrillary acidic protein (GFAP) in a 6-OHDA-lesioned rat PD model. Rosiglitazone (3 mg/kg) was administered intraperitoneally at 24 h and 30 min prior to the creation of an intranigral 6-OHDA lesion. A reduction in TH protein expression began at 3 days and a prominent decrease was observed at 7 days post-lesion, and decreases of dopamine (DA) levels began at 1 day post-lesion. In contrast, GFAP expression was significantly increased at 3 days and preserved for up to 7 days post-lesion and the patterns of GFAP expression was inversely correlated to changes in TH expression. Furthermore, COX-2 expression in the rostral striatum showed a significant increase at 6h post-lesion while that of the caudal striatum was increased at 12 h. In the 6-OHDA-lesioned model, the activation of PPARγ by rosiglitazone significantly prevented TH protein expression reductions, and inhibited 6-OHDA-induced microglia activation in striatum. In addition, rosiglitazone attenuated in production of both COX-2 and TNF-α expression. In contrast, rosiglitazone pretreatment led to greater increases in striatal GFAP expression than 6-OHDA alone and changes in the expression of this protein preceded the changes that were seen with TH expression. These results suggest that the neuroprotection observed with rosiglitazone treatment may be partially due to the attenuation of COX-2 production and the strengthening of astrocyte function. Our results provide insight into the neuroprotective mechanisms of rosiglitazone against 6-OHDA-induced neuronal damages.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"