Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Endocannabinoids and the renal proximal tubule: an emerging role in diabetic nephropathy.

Diabetic nephropathy is a leading cause for the development of end-stage renal disease. In diabetes mellitus, a number of structural changes occur within the kidney which leads to a decline in renal function. Damage to the renal proximal tubule cells (PTCs) in diabetic nephropathy includes thickening of the basement membrane, tubular fibrosis, tubular lesions and hypertrophy. A clearer understanding of the molecular mechanisms involved in the development of diabetic kidney disease is essential for the understanding of the role cellular pathways play in its pathophysiology. The endocannabinoid system is an endogenous lipid signalling system which is involved in lipogenesis, adipogenesis, inflammation and glucose metabolism. Recent studies have demonstrated that in diabetic nephropathy, there is altered expression of the endocannabinoid system. Future investigations should clarify the role of the endocannabinoid system in the development of diabetic nephropathy and within this system, identify potential therapeutics to reduce the burden of this disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app