Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Embryo exposure to elevated cortisol level leads to cardiac performance dysfunction in zebrafish.

In zebrafish (Danio rerio), de novo cortisol synthesis commences only after hatching, providing an interesting model to study the effects of maternal stress and abnormal cortisol deposition on embryo development and performance. We hypothesized that elevated cortisol levels during pre-hatch embryogenesis compromise cardiac performance in developing zebrafish. Cortisol was microinjected into one-cell embryos to elevate basal cortisol levels during embryogenesis. Elevated embryo cortisol content increased heart deformities, including pericardial edema and malformed chambers, and lowered resting heartbeat post-hatch. This phenotype coincided with suppression of key cardiac genes, including nkx2.5, cardiac myosin light chain 1, cardiac troponin type T2A, and calcium transporting ATPase, underpinning a mechanistic link to heart malformation. The attenuation of the heartbeat response to a secondary stressor post-hatch also confirms a functional reduction in cardiac performance. Altogether, high cortisol content during embryogenesis, mimicking increased deposition due to maternal stress, decreases cardiac performance and may reduce zebrafish offspring survival.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app